79 research outputs found

    Development of a Multiphase Photon Monte Carlo Method for Spray Combustion and its Application in High-pressure Conditions

    Get PDF
    In this work the development of a multiphase photon Monte Carlo (PMC) method with a focus on resolving radiative heat transfer in combustion simulations is presented. The multiphase PMC solver can account for description of participating media in both Lagrangian and Eulerian frameworks. The solver is validated against exact solutions in several one-dimensional configurations. The developed solver is then applied to Diesel spray combustions, where liquid spray droplets are assumed to be cold, nonemitting, large, and isotropically scattering. Several formulations for radiative properties of the Diesel spray are first explored. The PMC solver has then been coupled with the multiphase spray combustion solver in OpenFOAM and the coupled solver is used for simulations of high pressure Diesel spray combustion. It was found that in typical Diesel spray combustion applications, such as in an internal combustion engine, impact of radiation on the evolution of the liquid spray was insignificant. Although the impact of radiation on the spray was minimal, nongray spectral properties and the assumption of semi-transparency for Diesel spray were found to impact the radiative transfer significantly, while impact of scattering was marginal. Spray radiation was also found not to have much effect on global combustion characteristics in high-pressure engine-relevant configurations. However, a small but noticeable effect on minor species distribution relevant to pollutant formation was observed

    Development of High-Order P\u3cem\u3e\u3csub\u3eN\u3c/sub\u3e\u3c/em\u3e Models for Radiative Heat Transfer in Special Geometries and Boundary Conditions

    Get PDF
    The high-order spherical harmonics () method for 2-D Cartesian domains is extracted from the 3-D formulation. The number of equations and intensity coefficients reduces to (N+1)2/4 in the 2-D Cartesian formulation compared with N(N+1)/2 for the general 3-D formulation. The Marshak boundary conditions are extended to solve problems with nonblack and mixed diffuse-specular surfaces. Additional boundary conditions for specified radiative wall flux, for symmetry/specular reflection boundaries have also been developed. The mathematical details of the formulations and their implementation in the OpenFOAM finite volume based CFD software platform are presented. The accuracy and computational cost of the 2-D Cartesian are compared with that of the 3-D solver and a Photon Monte Carlo solver for a square enclosure, as well as a 45° wedge geometry with variable radiative properties. The new boundary conditions have been applied for both test cases, and the boundary condition for mixed diffuse-specular surfaces is further illustrated by numerical examples of a rectangular geometry enclosed by walls with different surface characteristics

    Effect of Multiphase Radiation on Coal Combustion in a Pulverized Coal jet Flame

    Get PDF
    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame

    IMECE2005-82993 MONTE CARLO SCHEMES FOR RADIATIVE TRANSFER IN MEDIA REPRESENTED BY PARTICLE FIELDS

    Get PDF
    ABSTRACT Monte Carlo ray-tracing schemes are developed for the evaluation of radiative heat transfer for problems, in which the participating medium is represented by discrete point-masses, such as the ow eld and scalar elds in PDF Monte Carlo methods frequently used in combustion modeling. Photon ray tracing in such cases requires that an optical thickness is assigned to each of the point-masses. Two approaches are discussed, the Point Particle Model (PPM), in which the shape of particle is not speci ed, and the Spherical Particle Model (SPM) in which particles are assumed to be spheres with constant radiation properties. Another issue for ray tracing in particle elds is the in uence region of a ray. Two ways of modeling a ray are proposed. In the rst, each ray is treated as a standard volume-less line. In the other approach, the ray is assigned a small solid angle, and is thus treated as a cone with a decaying in uence function away from its center line. Based on these models, three different interaction schemes between rays and particles are proposed, i.e., Line-SPM, Cone-PPM and Cone-SPM methods, and are compared employing several test problems

    Two-dimensional axisymmetric formulation of high order spherical harmonics methods for radiative heat transfer

    Full text link
    The spherical harmonics (PN) method is a radiative transfer equation solver, which approximates the radiative intensity as a truncated series of spherical harmonics. For general 3-D configurations, N(N+1)/2 intensity coefficients must be solved from a system of coupled second-order elliptic PDEs. In 2-D axisymmetric applications, the number of equations and intensity coefficients reduces to (N+1)2/4 if the geometric relations of the intensity coefficients are taken into account. This paper presents the mathematical details for the transformation and its implementation on the OpenFOAM finite volume based CFD software platform. The transformation and implementation are applicable to any arbitrary axisymmetric geometry, but the examples to test the new formulation are based on a wedge grid, which is the most common axisymmetric geometry in CFD simulations, because OpenFOAM and most other platforms do not have true axisymmetric solvers. Two example problems for the new axisymmetric PN formulation are presented, and the results are verified with that of the general 3-D PN solver, a Photon Monte Carlo solver and exact solutions

    A Comparison of Specularly Reflective Boundary Conditions and Rotationally Invariant Formulations for Discrete Ordinate Methods in Axisymmetric Geometries

    Get PDF
    In simulations of periodic or symmetric geometries, computational domains are reduced by imaginary boundaries that exploit the symmetry conditions. Two boundary conditions are proposed for Discrete Ordinate Methods to solve axisymmetric radiation problems. Firstly, a specularly reflective boundary condition similar to that is used in Photon Monte Carlo methods is developed for Discrete Ordinate Methods. Secondly, the rotational invariant formulation is revisited for axisymmetric wedge geometries. Correspondingly, a new rotationally invariant boundary condition specially designed for axisymmetric problems on wedge shape is proposed to enforce the rotational invariance properties possessed by the radiative transfer equation (RTE) but violated by three-dimensional conventional Discrete Ordinate Methods. Both boundary conditions have the advantage that the discretization and linear equation solution procedures of conventional three-dimensional DOM are not affected by changing to a reduced geometry. Consistency, accuracy and efficiency of the new boundary conditions are demonstrated by multiple numerical examples involving periodic symmetry and axisymmetry. A comparison between specularly reflective boundary conditions and the rotationally invariant formulation shows that the latter offers several advantages for wedge geometries. In other symmetry conditions, when the rotational invariant formulation is not applicable, specular reflective boundary conditions are still effective

    A Detailed Modeling Study of Radiative Heat Transfer in A Heavy-Duty Diesel Engine

    Get PDF
    In recent years, the importance of radiative heat transfer in combustion has been increasingly recognized. Detailed models have become available that accurately represent the complex spectral radiative properties of reacting gas mixtures and soot particles, and new methods have been developed to solve the radiative transfer equation (RTE). At the same time, the trends toward higher operating pressures and higher levels of exhaust-gas recirculation in compression-ignition engines, together with the demand for higher quantitative accuracy from in-cylinder CFD models, has led to renewed interest in radiative transfer in engines. Here an in-depth investigation of radiative heat transfer is performed for a heavy-duty diesel truck engine over a range of operating conditions. Results from 10 different combinations of turbulent combustion models, spectral radiation property models, and RTE solvers are compared to provide insight into the global influences of radiation on energy redistribution in the combustion chamber, heat losses, and engine-out pollutant emissions (NO and soot). Also, the relative importance of the individual contributions of molecular gas versus soot radiation, the spectral model, the RTE solver, and unresolved turbulent fluctuations in composition and temperature (turbulence–radiation interactions – TRI) are investigated. Local instantaneous temperatures change by as much as 100 K with consideration of radiation, but the global influences of radiation on heat losses and engine-out emissions are relatively small (in the 5–10% range). Molecular gas radiation dominates over soot radiation, consideration of spectral properties is essential for accurate predictions of reabsorption, a simple RTE solver (a first-order spherical harmonics – P1 – method) is sufficient for the conditions investigated, and TRI effects are small (less than 10%). While the global influences of radiation are relatively small, it is nevertheless desirable to explicitly account for radiation in in-cylinder CFD. To that end, a simplified CFD radiation model has been proposed, based on the findings reported here

    Soot and Spectral Radiation Modeling for High-Pressure Turbulent Spray Flames

    Get PDF
    A transported probability density function (PDF) method and a photon Monte Carlo/line-by-line (PMC/LBL) spectral model are exercised to generate physical insight into soot processes and spectral radiation characteristics in transient high-pressure turbulent n-dodecane spray flames, under conditions that are relevant for compression-ignition piston engines. PDF model results are compared with experimental measurements and with results from a locally well-stirred reactor (WSR) model that neglects unresolved turbulent fluctuations in composition and temperature. Computed total soot mass and soot spatial distributions are highly sensitive to the modeling of unresolved turbulent fluctuations. To achieve reasonable agreement between model and experiment and to capture the highly intermittent nature of soot in the turbulent flame, it is necessary to accurately represent mixing and the low diffusivity of soot particles. This is accomplished in the PDF framework using a mixing model that enforces locality in the gas-phase composition space, while not mixing the transported soot variables. The results suggest that mixing is at least as important as kinetics in controlling soot formation and evolution in high-pressure turbulent flames. Regarding radiation, radiant fractions and global influences of radiation in these flames are relatively small. Nevertheless, an examination of spectral radiative heat transfer provides valuable insight into the nature and modeling of radiation in high-pressure turbulent combustion systems. There are complex spectral interactions that are revealed using PMC/LBL. CO2 dominates the total radiative emission and reabsorption, but most of the emitted CO2 radiation is reabsorbed before reaching the walls. On the other hand, most of the emitted soot radiation reaches the walls, but soot radiation is a small contribution overall; H2O dominates the radiation that reaches the walls. Global turbulence–radiation interactions (TRI) effects are small, but radiative emission from soot increases by approximately a factor two when TRI are considered. Radiative transfer contributes both to energy redistribution in the vessel and to wall heat losses. The results suggest that a simple model that considers soot radiation and the principal CO2 and H2O spectral bands might be sufficient to capture the key influences of radiation in engine CFD. It is expected that these findings will contribute to the development of truly predictive CFD models for engines and other high-pressure turbulent combustion systems

    Dihydroartemisinin-Piperaquine and Artemether-Lumefantrine for Treating Uncomplicated Malaria in African Children: A Randomised, Non-Inferiority Trial

    Get PDF
    BACKGROUND: Artemisinin combination therapies (ACTs) are currently the preferred option for treating uncomplicated malaria. Dihydroartemisinin-piperaquine (DHA-PQP) is a promising fixed-dose ACT with limited information on its safety and efficacy in African children. METHODOLOGY/PRINCIPAL FINDINGS: The non-inferiority of DHA-PQP versus artemether-lumefantrine (AL) in children 6-59 months old with uncomplicated P. falciparum malaria was tested in five African countries (Burkina Faso, Kenya, Mozambique, Uganda and Zambia). Patients were randomised (2:1) to receive either DHA-PQP or AL. Non-inferiority was assessed using a margin of -5% for the lower limit of the one-sided 97.5% confidence interval on the treatment difference (DHA-PQP vs. AL) of the day 28 polymerase chain reaction (PCR) corrected cure rate. Efficacy analysis was performed in several populations, and two of them are presented here: intention-to-treat (ITT) and enlarged per-protocol (ePP). 1553 children were randomised, 1039 receiving DHA-PQP and 514 AL. The PCR-corrected day 28 cure rate was 90.4% (ITT) and 94.7% (ePP) in the DHA-PQP group, and 90.0% (ITT) and 95.3% (ePP) in the AL group. The lower limits of the one-sided 97.5% CI of the difference between the two treatments were -2.80% and -2.96%, in the ITT and ePP populations, respectively. In the ITT population, the Kaplan-Meier estimate of the proportion of new infections up to Day 42 was 13.55% (95% CI: 11.35%-15.76%) for DHA-PQP vs 24.00% (95% CI: 20.11%-27.88%) for AL (p<0.0001). CONCLUSIONS/SIGNIFICANCE: DHA-PQP is as efficacious as AL in treating uncomplicated malaria in African children from different endemicity settings, and shows a comparable safety profile. The occurrence of new infections within the 42-day follow up was significantly lower in the DHA-PQP group, indicating a longer post-treatment prophylactic effect. TRIAL REGISTRATION: Controlled-trials.com ISRCTN16263443

    Safety and efficacy of dihydroartemisinin-piperaquine versus artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Zambian children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria in Zambia remains a public health and developmental challenge, affecting mostly children under five and pregnant women. In 2002, the first-line treatment for uncomplicated malaria was changed to artemether-lumefantrine (AL) that has proved to be highly efficacious against multidrug resistant <it>Plasmodium falciparum</it>.</p> <p>Objective</p> <p>The study objective was to determine whether dihydroartemisinin-piperaquine (DHA/PQP) had similar efficacy, safety and tolerability as AL for the treatment of children with uncomplicated <it>P. falciparum </it>malaria in Ndola, Zambia.</p> <p>Methods</p> <p>Between 2005 and 2006, 304 children (6-59 months old) with uncomplicated <it>P. falciparum </it>were enrolled, randomized to AL (101) or DHA/PQP (203) and followed up for 42 days. Outcome of treatment was defined according to the standard WHO classification, i.e. early treatment failure (ETF), late clinical failure (LCF, late parasitological failure (LPF) and adequate clinical and parasitological response (ACPR). Recurrent infections were genotyped to distinguish between recrudescence and new infection.</p> <p>Results</p> <p>No ETF was observed. At day 28, PCR-uncorrected ACPR was 92% in the DHA/PQP and 74% in the AL arm (OR: 4.05; 95%CI: 1.89-8.74; p < 0.001). Most failure were new infections and PCR-corrected ACPR was similar in the two study arms (OR: 0.69; 95%CI: 0.22-2.26; p = 0.33). Similar results were observed for day 42, i.e. higher PCR-uncorrected ACPR for DHA/PQP, mainly due to the difference observed up to day 28, while the PCR-corrected ACPR was similar: DHA/PQP: 93% (179/192), AL: 93% (84/90), (OR: 0.92; 95%CI: 0.30-2.64; p = 0.85). Except for cough, more frequent in the DHA/PQP arm (p = 0.04), there were no differences between treatment arms in the occurrence of adverse events. Two serious adverse events were probably associated to AL treatment.</p> <p>Conclusion</p> <p>DHA/PQP was as efficacious, safe and well tolerated in treatment of uncomplicated malaria as AL, though in the latter group more new infections during the follow up were observed. DHA/PQP seems a potential candidate to be used as an alternative first-line or rescue treatment in Zambia.</p> <p>Trial Registration</p> <p><a href="http://www.controlled-trials.com/ISRCTN16263443">ISRCTN16263443</a>, at <url>http://www.controlled-trials.com/isrctn</url></p
    corecore